The solution(s) to the long-standing issue of the Internal Rate of Return: scientific and educational implications

Carlo Alberto Magni

Department of Economics

CEFIN – Center for Research in Banking and Finance
University of Modena and Reggio Emilia

Rate of interest and Internal Rate of Return

In the first lesson of a course in financial mathematics...

P $= (f_0, f_T)$

rate of interest
$$x = \frac{f_T + f_0}{-f_0} = \frac{\text{interest}}{\text{capital}}$$

$$P = (-100,110)$$
 $x = \frac{110 - 100}{100} = 10\%$

...after some lessons...

$$\mathbf{P} = (f_0, f_1, f_2, \dots, f_T) \in \mathbb{R}^{T+1}$$

$$NPV(r) = \sum_{t=0}^{T} f_t \cdot (1+r)^{-t}$$

$$NPV(x) = \sum_{t=0}^{T} f_t \cdot (1+x)^{-t} = 0$$
 Internal Rate of Return (IRR)

The IRR problems

- (1) multiple real-valued IRRs
- (2) complex-valued IRRs
- (3) ambiguous meaning (rate of return vs. rate of cost)
- (4) incompatibility with the NPV
- (5) incompatibility with arbitrage
- (6) variable costs of capital
- (7) -1 as a possible rate of return
- (8) real numbers smaller than -1
- (9) no rate of return for arbitrage strategies (?)
- (10) no rate of return on the initial capital
- (11) relations between IRR and accounting rates of return (ROI, ROE)

Definition. *A rate of return for project P is a number fulfilling the following properties:*

- (i) it is a real-valued number
- (ii) it may be formally represented by a ratio, whose numerator and denominator are interpretable as return and capital, respectively
- (iii) it is accompanied by another (real-valued) number, which is interpretable as an opportunity cost of capital, and represents the minimum rate of return required by the investors
- (iv) it supplies a criterion which solves problems (1)-(11) above

Fundamental relation

$$\overbrace{c_t}^{\text{end-of-period capital}} = \underbrace{cash \text{ flow}}_{c_{t-1}} + \underbrace{I_t}_{t} - \underbrace{f_t}_{t}$$

Time	capital	Interest	cash flow	rate of interest
0	$c_0 = -f_0$		f_0	
1	c_1	I_1	f_1	$x_1 = I_1/c_0$
2	c_2	I_2	f_2	$x_2 = I_2/c_1$
i	:	:	:	:
<i>T</i> – 1	c_{T-1}	I_{T-1}	f_{T-1}	$x_{T-1} = I_{T-1}/c_{T-2}$
T	$c_T = 0$	I_T	f_T	$x_T = I_T/c_{T-1}$
	$C \coloneqq \sum\nolimits_{t=1}^{T} c_{t-1}$	$I \coloneqq \sum\nolimits_{t=1}^{T} I_t$	$f \coloneqq \sum\nolimits_{t = 0}^T {{f_t}}$	

Replicating portfolio

$$\overbrace{c_t^*}^* = \overbrace{c_{t-1}^*}^{\text{beginning-of-period capital}} + \overbrace{r \ c_{t-1}^*}^{\text{interest}} - \overbrace{f_t}^{\text{cash flow}}$$

Time	capital	interest	cash flow	rate of interest
0	$c_0^* = - f_0$		f_0	
1	c_1^*	I_1^*	f_1	$r=I_1^*/c_0^*$
2	c_2^*	I_2^*	f_2	$r=I_2^*/c_1^*$
:	:	:	:	:
T - 1	c_{T-1}^*	I_{T-1}^*	f_{T-1}	$r = I_{T-2}^*/c_{T-2}^*$
T	c_T^*	I_T^*	f_T	$r = I_{T-1}^*/c_{T-1}^*$
	$C^* \coloneqq \sum_{t=1}^T c_{t-1}^*$	$I^* \coloneqq \sum\nolimits_{t=1}^T I_{t-1}^*$	$f \coloneqq \sum\nolimits_{t=1}^T \! f_{t-1}$	

total interest=*I*

total foregone interest= I^*

$$NPV = (1+r)^{-T} \cdot \overbrace{(I-I^*)}^{NFV}$$

Which relation do the period rates x_t 's bear to the Purely Internal Rate of Return?

PIRR is a weighted average of one-period rates of return
$$\bar{x} = \frac{x_1c_0 + x_2c_1 + \dots + x_Tc_{T-1}}{c_0 + c_1 + \dots + c_{T-1}}$$

Which relation does the (first lesson)'s notion of rate of interest bear to Purely Internal Rate of Return?

$$\bar{x} = \frac{I}{C} = \frac{f}{C} = \frac{f_0 + f_1 + \dots + f_T}{c_0 + c_1 + \dots + c_{T-1}}$$

$$\bar{x} = rate \ of \ interest = \frac{f_0 + f_T}{-f_0} = \frac{f_0 + f_T}{c_0}$$

What is $\overline{\rho}$?

$$C^* := c_0^* + c_1^* + c_2^* \dots + c_{T-1}^*$$

The investor undertaking the project foregoes to invest C^* in the market

$$I^* = \bar{\rho}C = rC^* = \underbrace{r}_{\text{foregone rate of return}} \cdot C + r \cdot \underbrace{(C^* - C)}_{\text{excess capital}}$$

$$\bar{\rho} = \frac{I^*}{C} = \underbrace{r}_{\text{foregone rate of return}}^{\text{foregone rate of return}} + r \underbrace{C^* - C}_{C}^{\text{excess capital}} = r \frac{C^*}{C}$$

 $\frac{c^*}{c}$ serves the purpose of adjusting for capital

The cost of capital is a weighted average as well

$$\bar{\rho} = \frac{\rho_1 c_0 + \rho_2 c_1 + \dots + \rho_T c_{T-1}}{c_0 + c_1 + \dots + c_{T-1}}$$

$$\rho_t := r \frac{c_{t-1}^*}{c_{t-1}}$$

The argument does not depend on depreciation

it holds for any $c = (c_0, c_1, ..., c_{T-1})$

$$(c_0, c_1, \dots, c_{T-1}) \mapsto c \mapsto \bar{x}$$

To every project there corresponds a return function, not a return rate: $C \mapsto \overline{x}$

Purely Internal Return Function

A project is associated with infinitely many pairs (C, \overline{x})

EVERY REAL-VALUED IRR IS A PARTICULAR CASE OF PIRR

H = 1363.6

Time	0	1	2	3	4	
Cash Flows	-900	800	100	100	91	PIRR
Depreciation	$c_0 = 900$	$c_1 = 226.1$	$c_2 = 157.7$	$c_3 = 79.8$	$c_4 = 0$	
		$x_1 = 14\%$	$x_2 = 14\%$	$x_3 = 14\%$	$x_4 = 14\%$	14%
Depreciation	$c_0 = 900$	$c_1 = 200$	$c_2 = 100$	$c_3 = 163.6$	$c_4 = 0$	
		<i>x</i> ₁ =11.11%	$x_2 = 0\%$	$x_3 = 163.6\%$	$x_4 = -44.38\%$	14%
Depreciation	$c_0 = 900$	$c_1 = 300$	$c_2 = 123.6$	$c_3 = 40$	$c_4 = 0$	
		$x_1 = 22.22\%$	$x_2 = -25.47\%$	$x_3 = 13.27\%$	$x_4 = 127.5\%$	14%
Depreciation	$c_0 = 900$	$c_1 = 190$	$c_2 = 157$	$c_3 = 116.6$	$c_4 = 0$	
		$x_1 = 10\%$	$x_2 = 35.26\%$	$x_3 = 37.96\%$	$x_4 = -21.96\%$	14%
Depreciation	$c_0 = 900$	c_1	c_2	$1363.6 - c_1 - c_2$	$c_4 = 0$	
		x_1	x_2	<i>x</i> ₃	x_4	14%

Every real-valued IRR is just a value taken on by the PIRR function in correspondence of a particular capital ${\cal H}$

$$\bar{x}(H) = \frac{x_1c_0 + x_2c_1 + \dots + x_Tc_{T-1}}{c_0 + c_1 + \dots + c_{T-1}} = IRR$$

The accounting problem

What is the relation between IRR and accounting rates of return?

Are accounting rates of return economically significant? Can they be used for measuring a project's or a firm's performance?

"it is widely presumed in the accounting and economic literatures that, for the most part in practice, ARRs are artifacts without economic significance." (Peasnell, 1982, p. 368).

$$ROE_t = \frac{\text{Net Income}}{\text{Equity Book Value}} = \frac{I_t}{c_{t-1}}$$

Time	Equity Book value	Net Income	ROE
0	c_0		
1	c_1	I_1	$\frac{I_1}{c_0}$
2	c_2	I_2	$\frac{I_2}{c_1}$
:	:	:	
Т	0	I_T	$\frac{I_T}{c_{T-1}}$

$$\bar{x} = \frac{\sum_{1}^{T} ROE_{t} \cdot book \ value_{t-1}}{\sum_{1}^{T} book \ value_{t-1}}$$

The ROEs generate the PIRR

A project (a firm) creates value if and only if the weighted average of accounting rates of return \overline{x} exceeds the cost of capital $\overline{\rho}$, whatever the depreciation pattern selected by managers for the fixed assets

Mutually exclusive projects

$$f^{A-B} = f^A - f^B$$

$$\overline{x}_{A-B} \geq \overline{\rho}_{A-B}$$

Ranking projects

Maximize the margin!

Decomposition of NPV (NFV)

$$\Delta f = f(x^1) - f(x^0) = \sum_{i=1}^n \Delta_i f + \underbrace{\sum_{i < j} \Delta_{i,j} f + \dots + \Delta_{1,2,\dots,n} f}_{\text{interaction effect}} = \sum_{k=1}^n \sum_{i_1,i_2,\dots,< i_k}^n \Delta_{i,j} f$$

$$f(x_1, x_2) = x_1 \cdot x_2$$

$$x^0 = (x_1^0, x_2^0) = (C^*, r)$$
 $x^1 = (x_1^1, x_1^1) = (C, \bar{x})$

$$NFV = C(\bar{x} - \bar{\rho}) = \bar{x}C - rC^* = f(x^1) - f(x^0)$$

$$NFV = \overbrace{C^*(\bar{x} - r)}^{\text{rate}} + \overbrace{r(C - C^*)}^{\text{capital}} + \underbrace{(C - C^*)(\bar{x} - r)}^{\text{interaction effect}}$$

		Source				
		Rate	Capital	Interaction		
	1	$c_0^*(x_1-r)$	0	0		
_	2	$c_1^*(x_2-r)$	$r(c_1^*-c_1)$	$(c_1^* - c_1)(x_2 - r)$		
erio	3	$c_2^*(x_3-r)$	$r(c_2^*-c_2)$	$(c_2^* - c_2)(x_3 - r)$		
		:	:	:		
	Т	$c_{T-1}^*(x_T-r)$	$r(c_{T-1}^* - c_{T-1})$	$(c_{T-1}^* - c_{T-1})(x_T - r)$		

(if required, it is possible to decompose the interaction share into two parts: rategenerated part and capital-generated part)

A RATE OF RETURN IS INTEREST ON CAPITAL CAPITAL IS FORMALLY AND FINANCIALLY ARBITRARY

EVERY PROJECT IS ASSOCIATED WITH A RETURN FUNCTION

Any definition of rate of return as a real number is just a particular case of PIRR

This approach incorporates every possible definition of rate of return as a real number

Educational implications:

Course of basic finance and financial mathematics Courses of accounting and corporate finance

- (i) The main financial notions (compounded interest, rate of return, residual income/excess profit, present value, arbitrage) are derived (i.e., the fundamental relation)
 - (ii) The role of the IRR is diminished
- (iii) Conciliation between project rate of return, Net Present Value and rational choice theory
- (iv) accounting depreciation is conceptually equivalent to debt's depreciation
 - (v) income, return and interest are synonyms
 - (vi) accounting rates of return are economic rates of return

A second solution from Makeham (1874)

$$K_r \coloneqq \sum_{t=1}^{T} \underbrace{\widetilde{K_t}}_{\text{principal repayment}} (1+r)^{-t}$$

$$K_t = c_{t-1} - c_t$$

Makeham's formula

$$Value = K_r + \frac{IRR}{r}(c_0 - K_r)$$

Generalization

Value =
$$K_r + \frac{\bar{x}_r}{r}(c_0 - K_r)$$

$$\bar{x}_r = \frac{\sum_{1}^{T} x_t c_{t-1} (1+r)^{-t}}{\sum_{1}^{T} c_{t-1} (1+r)^{-t}} = \frac{\sum_{1}^{T} x_t c_{t-1} (1+r)^{-t}}{C_r}$$

Average Internal Rate of Return (AIRR)

$$NPV = \overbrace{(c_0 - K_r)}^{\text{capital sacrificed}} \cdot \left(\frac{\bar{x}_r}{r} - 1\right)$$

Project acceptability

$\overline{x}_r \gtrless r$

$$NPV = \frac{c_0 - K_r}{r} (\bar{x}_r - r) \qquad \Rightarrow \quad \bar{x}_r = r + \frac{r \cdot NPV}{c_0 - K_r}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

An IRR is a particular case of AIRR

Mutually exclusive projects

$$f^{A-B}=f^A-f^B$$

$$\overline{x}_{r,A-B} \geqslant r$$

Project ranking

Maximize the AIRR

Arbitrage

0	1		T
A > 0	0	0	0

Pick
$$C = c_0 = -A$$

$$PIRR = \frac{\text{algebraic sum of cash flows}}{\text{capital invested}} = \frac{A}{-A} = -1 \implies \text{it is a rate of cost}$$

$$COC = r\frac{C^*}{C} = r\frac{A\left(\frac{(1+r)^{-T}-1}{r}\right)}{A} = (1+r)^{-T}-1$$

$$NPV(r) = \frac{-A(-1 - [(1+r)^{-T} - 1])}{(1+r)^{T}} = A$$

$$\operatorname{Pick} C_r = c_0 = -A \quad (\text{e.g.} \ c_t = 0 \ t > 0)$$

$$AIRR = \frac{I_1 + 0 + \dots + 0}{-A} = \frac{A}{-A} = -1$$

$$NPV(r) = -A(-1-r)(1+r)^{-1} = A$$

Any project may be seen as an arbitrage

$$\mathbf{P} = (f_0, f_1, f_2, \dots, f_T) \in \mathbb{R}^{T+1}$$

$$NPV(r) > 0$$

Fix
$$c_t$$
 so that $\mathcal{C} = -\sum_0^T f_t = -NPV(0)$. This implies

$$PIRR = \frac{\sum_{0}^{T} I_{t}}{-\sum_{0}^{T} f_{t}} = \frac{\sum_{0}^{T} f_{t}}{-\sum_{0}^{T} f_{t}} = -1$$

$$NPV(r) = -NPV(0)(-1 - \bar{\rho})(1+r)^{-T}$$

$$= -NPV(0)\left(-1 - r\frac{C^*}{C}\right)(1+r)^{-T} = -NPV(0)\left(-1 - r\frac{C^*}{-NPV(0)}\right)(1+r)^{-T} = \left(\sum_{t=1}^{T} I_t - rC^*\right)(1+r)^{-T}$$

Fix
$$c_t$$
 so that $C_r = -NPV(r)$

$$AIRR = \frac{NPV(r)}{-NPV(r)} = -1$$

$$NPV(r) = -NPV(r)(-1-r)(1+r)^{-1}$$

\overline{x}_r may be seen as a traditional IRR in many ways:

First interpretation: one-period project

Time	0	1
Cash flows	$-C_r$	$C_r(1+\bar{x}_r)$

$$NPV(y) = -C_r + \frac{C_r(1 + \overline{x}_r)}{1 + y} = 0 \Leftrightarrow y = \overline{x}_r$$

Second interpretation: market-determined rate of return

Time	0	1
Cash flows	$-c_0$	$V_1 + f_1$

$$V_1 = \sum_{t=2}^{T} \frac{f_t}{(1+r)^{t-1}}$$

$$\bar{x}_r = \frac{V_1 + f_1 - c_0}{c_0}$$

Third interpretation: perpetual coupon bond

Time	0	1	2	3	•••
Cash flows	$-[c_0-K_r]$	$\bar{x}_r[c_0-K_r]$	$\bar{x}_r[c_0-K_r]$	$\bar{x}_r[c_0-K_r]$	

$$c_0 - K_r = \text{face value}$$
 $\bar{x}_r = \text{coupon rate}$

$$NPV(y) = -(c_0 - K_r) + \sum_{t=1}^{\infty} \frac{\bar{x}_r[c_0 - K_r]}{(1+y)^t}$$

Fourth interpretation: same capital, same residual income

Time	0	1	2	•••	Т
Cash flows	$-c_0$	$\bar{x}_r(c_0) \cdot c_0$	$\bar{x}_r(c_0) \cdot c_0$		$c_0(1+\bar{x}_r(c_0))$

 $c_t = c_0$ for all t < T equal to the capitals of project ${\it P}$

Constant residual income $c_0(ar{x}_r(c_0)-r)$ equal to the average residual income of P

NPV =
$$c_0(\bar{x}_r(c_0) - r)$$
 which is equal to the NPV of P

...and infinitely many others

PIRR and AIRR contrasted

	PIRR	AIRR
Definition (return measure)	$\bar{x} \coloneqq \frac{\sum_{1}^{T} I_{t}}{C}$ $= \frac{\sum_{1}^{T} x_{t} c_{t-1}}{\sum_{1}^{T} c_{t-1}}$	$\bar{x}_r \coloneqq \frac{\sum_1^T I_t (1+r)^{-(t-1)}}{C_r}$ $= \frac{\sum_1^T x_t c_{t-1} (1+r)^{-(t-1)}}{\sum_1^T c_{t-1} (1+r)^{-(t-1)}}$
Definition (cash-flow measure)	$\bar{x} \coloneqq \frac{\sum_{0}^{T} f_{t}}{C}$	
dependence on the market rate	NO	YES
Definition of investment	<i>C</i> > 0	$C_r > 0$
dependence on the market rate	NO	YES
Hurdle rate	$\bar{\rho} \coloneqq r \cdot \left(\frac{C^*}{C}\right)$	r
dependence on the market rate	YES	YES
Residual rate of return	$\bar{x} - \bar{ ho}$	$\bar{x}_r - r$
Criterion of project acceptability and choice between mutually exclusive projects	$\bar{x} > \bar{\rho}$	$ \bar{x}_r > r $
Criterion of project ranking	$\max (\bar{x} - \bar{\rho})$	$\max\left(\bar{x}_r - r\right) = \max \bar{x}_r$
Hurdle rate with variable market rates	$ar{ ho} \coloneqq rac{\sum_{1}^{T} r_{t} c_{t-1}^{*}}{C}$ $C(\overline{x} - ar{ ho})(1+r)^{-T}$	$\bar{r} \coloneqq \frac{\sum_{1}^{T} r_{t} c_{t-1}}{C}$
Net Present Value	$C(\overline{x}-\overline{ ho})(1+r)^{-T}$	$C_r(\bar{x}_r - r)(1+r)^{-1}$

Related papers

Magni C.A. (2010). Average Internal Rate of Return and investment decisions: A new perspective. *The Engineering Economist*, 55(2), 150–180.

Magni C.A. (2010). Purely Internal Rate of Return and investment decisions: a cash-flow perspective. http://ssrn.com/abstract=1649604>.

Magni C.A (2010). Residual income and value creation: An Investigation into the Lost-Capital Paradigm . *European Journal of Operational Research*, 201(2), 505–519.

Magni C.A. (2009). Accounting and economic measures: An integrated theory of capital budgeting. Revised version in progress. http://ssrn.com/abstract=1498106>

Magni C.A. (2009). Splitting up value: A critical review of residual income theories. *European Journal of Operational Research*, 198(1) (October), 1–22.